Fair multilingual vandalism detection system for Wikipedia

Mykola Trokhymovych Muniza Aslam Ai-Jou Chou Ricardo Baeza-Yates Diego Saez-Trumper mykola.trokhymovych@upf.edu muniza-ctr@wikimedia.org aiko@wikimedia.org rbaeza@acm.org diego@wikimedia.org

Universitat Pompeu Fabra Barcelona

Agenda

Introduction

System design

Data preparation

Model training

2

3

4

Results

Introduction

- Wikipedia content is frequently used for powering other websites and products.
- Wikipedia has, on average, around **16** pages edited per second.
- Not all edits are good-faith (Figure 1). Bad-faith ones should be identified and reverted.
- Although some models help patrollers (like <u>ORES</u>), there are still open problems like model performance, language coverage, and fairness.

```
Lvov emerged as the centre of the historical
regions of [[Red Ruthenia]] and [[Galicia
(Eastern Europe) Galicia]] in the [[14th
```

Figure 1. Enwiki revision 1149625753 adding biased narrative that is later reverted

Lviv emerged as the centre of the historical regions of [[Red Ruthenia]] and [[Galicia (Eastern Europe) [Galicia]] in the [[14th

Fairness challenge

- **Background**: Anonymous editors usually have a higher revert rate
- **Problem:** Models overfit, causing anonymous editors discrimination
- **Impact:** New/anonymous editors are not converting to active editors, so their number decreases in the long term.

anonymous users

Goal & contribution

- **Goal:** Create a model to help editors to identify edits that require patrolling.
- **Approach:** Use implicit annotations (reverts) to train the ML models
- Contributions:
 - Open-source multilingual model for content patrolling on Wikipedia, outperforming the state-of-the-art models;
 - Significantly increasing the number of languages covered in more than 60%;
 - Study of the biases of different models and discuss the trade-offs between performance and fairness;
 - Model inference productionalization and deployment;

System design

- Text features preparation:
 - Process wikitext and compare with parent revision
 - Extract mwedittypes* based features
 - Extract texts that were added, removed, and changed
- Masked Language Models (MLMs) features extraction:
 - Pass each of the texts that were added, removed, or changed to the pre-trained classification model
 - Apply mean and max pooling to the list of scores of each signal to extract the final unified feature set
- Final Classification
 - Combine all extracted features with user and revision metadata
 - Pass the features to the final classifier

Figure 2. System design. Inference

Data preparation

Main characteristics of collected data:

- Using mediawiki_history and mediawiki_wikitext_history
- Collecting data for **47** most edited languages, except Kazakh, Portuguese, and Simple Wikipedia
- Snapshot dated 2022-07
- The observation period is 2022-01-01 2022-07-01
- Additional only anonymous users dataset (IP edits)

Dataset	train ^{anon}	train ^{all}	test
Number of samples	3,693,571	8,586,362	1,079,265
Observation period	6 months	6 months	1 week
Anonymous rate	1.0	0.17	0.19
Revert rate	0.28	0.08	0.07

Data filtering

Filters applied:

- Filter for "revision-wars" (leave only those reverted revisions that were not later reverted)
- Filter revisions created by bots
- Filter new pages creation revisions

Figure 3. Revision-wars filtering logic

Text processing

From Wikipedia, the free encyclopedia

|club-update = 22 May 2022

team|Kosovo national team]].

Line 21:

}}

Browse history int

Revision as of 11:13, 29 July 2022 (edit) ManiacOfSport (talk I contribs)

'''Laurit Krasnigi''' (born 14 July 2001) is a

professional [[Association football|footballer]] who

plays as a [[midfielder]] for Belgian club [[Royal

Antwerp F.C. [Antwerp]]. Born in [[Belgium]], he has

chosen to represent the [[Kosovo national football

Parsed text changes from wikitext: (1) text inserts: [], (2) texts removed: [] (3) **text changes**: [('Born in Belgium, he has chosen to represent the Kosovo national team.', 'Born in Kosovo, he has chosen to represent the Kosovo national team.')]

← Previous edit

Line 21: |club-update = 22 May 2022}} '''Laurit Krasniqi''' (born 14 July 2001) is a professional [[Association football|footballer]] who plays as a [[midfielder]] for Belgian club [[Royal Antwerp F.C. [Antwerp]]. Born in [[Kosovo]], he has chosen to represent the [[Kosovo national football team|Kosovo

national team]].

Figure 4. Text content changes extraction

Figure 5. Example of mwedittypes features

```
{'change_Media': 0, 'insert_Media': 0, 'move_Media': 0,
     'remove_Media': 0, 'change_Punctuation': 0,
     'insert_Punctuation': 3, 'move_Punctuation': 0,
     'remove_Punctuation': 0, ..., 'change_Whitespace': 0,
     'insert_Whitespace': 9, 'move_Whitespace': 0,
     'remove_Whitespace': 0, 'change_Word': 0,
     'insert_Word': 9, 'move_Word': 0, 'remove_Word': 0 }
```

Model training

Figure 6. Data splitting logic

Figure 7. Training process pipeline

Performance metrics

 Table:
 System performance on

a test set of all users

Table: System performance ona test set of anonymous users

Model	AUC	Pr@R0.75
Rule-based	0.75	0.07
ORES	0.84	0.22
Multilingual ^{anon}	0.77	0.14
Multilingual ^{anon} + MLM	0.79	0.15
Multilingual ^{all}	0.82	0.18
Multilingual ^{all} + MLM	0.84	0.20
Multilingual ^{all} + user features	0.87	0.27
Multilingual ^{all} + MLM & user features	0.88	0.28

Model	AUC	Pr@R0.75
Rule-based	0.50	0.24
ORES	0.70	0.31
Multilingual ^{anon}	0.77	0.40
Multilingual ^{anon} + MLM	0.80	0.44
Multilingual ^{all}	0.75	0.38
Multilingual ^{all} + MLM	0.78	0.42
Multilingual ^{all} + user features	0.76	0.39
Multilingual ^{all} + MLM & user features	0.79	0.43

Infobox:

Multilingual^{all} all users revisions metadata

Multilingual^{anon} anonymous revisions metadata

MLM Masked language models features

AUC Area Under the ROC Curve

Pr@R0.75 Precision at Recall level 0.75

Performance metrics

Figure 8. AUC score per model and language.

Fairness metrics

Table: Fairness metrics evaluation

Model	DIR	AUC diff
ORES	20.02	-0.043
Multilingual ^{anon}	1.98	0.073
Multilingual ^{anon} + MLM	2.06	0.084
Multilingual ^{all}	2.91	0.010
Multilingual ^{all} + MLM	3.08	0.017
Multilingual ^{all} + user features	9.36	-0.035
Multilingual ^{all} + MLM & user features	9.54	-0.017

Disparate Impact Ratio (DIR) Pr - probability \widehat{Y} - predicted value,

DIR_{base} = 7.93, where for DIR_{base} we use Y (real value) instead of Y

AUC diff - difference between AUC scores of an unprivileged group (anon. users) and privileged (registered users)

$DIR = \frac{Pr(Y=1|D=unprivilaged)}{Pr(Y=1|D=privilaged)}$

D - a group of users (anon. or registered)

Future work

Incorporating Non-Textual Changes

• Only ~56% of revisions have at least some changes in the text, so there is a need to analyze changes in media, tables, and other non-textual elements.

• Comparative Analysis of Language Models:

• The study only explored one language model, so testing various language models is needed to determine how different they perform in detecting vandalism.

• Increasing Language Diversity:

- Expanding the number of supported languages in the analysis
- Temporal Evolution Analysis:
 - Instead of focusing on fixed-time analysis, future research could take a longitudinal approach, tracking the evolution of Wikipedia pages and their revisions over an extended period.

Thank you!

Do you have any questions?

